Exercise 1: Graphical Method

A grocery store sells Q boxes of drinking water per week. The selling price for each box is
$\$ 15$. Write the total revenue equation and graph this equation. The capacity per week is 100 boxes.

$$
T R=S P \times Q=15 \times Q=15 Q
$$

The total revenue equation is $T R=15 Q$.
Step 1 Draw the two axes. Label the horizontal axis as Q (number of units) and the vertical axis as $T R$ (total revenue in dirhams).

For the points choose two Q-values

- $Q=0$
- $Q=100$

Calculate the total revenue when Q has the capacity value.

Q	$T R$
0	$15 \times 0=0$
100	$15 \times 100=1500$

Step 2 Plot the two points on the graph.

Step 3 Draw a straight line through the two plotted points for the total revenue graph.

This is the graph of the total revenue equation.

Exercise 2

The graph below is a total revenue graph. The capacity per period is $200 . T R$ is in dollars.

(a) The slope of the total revenue line gives the selling price per unit.

The two points on the line are $(0,0)$ and $(200,700)$.

$$
a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{700-0}{200-0}=\frac{700}{200}=3.5
$$

The selling price per unit is $\$ 3.50$.
Or,
Simply divide the $T R$ value of 700 by the quantity 200 to get the selling price of 3.50. We may also use the point $(100,350)$. Divide 350 by 100 to get the same selling price of $\$ 3.50$. Any other point located on the line will produce the same selling price 3.50 .
(b) The total revenue equation is $T R=3.5 Q$.
(c) From the graph we can easily see that the total revenue for 100 units is $\$ 350$.

Exercise 3

Two total revenue graphs, Graph A and Graph B, are shown below. In each case, the capacity for the period is 200 units.

(a) Graph A has a steeper slope than Graph B. This indicates a greater selling price.

We know that the slope of the total revenue line gives the selling price per unit.
Graph A: $a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{900-0}{200-0}=\frac{900}{200}=4.5$
The selling price per unit for Graph A is $\$ 4.50$.
Graph B: $a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{450-0}{200-0}=\frac{450}{200}=2.25$
The selling price per unit for Graph B is $\$ 2.50$.
(b) The total revenue equation for Graph $\mathrm{A}: T R=4.5 Q$.

The total revenue equation for Graph B: $T R=2.25 Q$.

